

Enhancing Bispecific T Cell Engager Discovery with Al and Mammalian Display

Matthew Greving, PhD VP, Head of ML and Platform, iBio

Festival of Biologics Oct. 2023

Relatively Easy Targets & Modes of Action Dominate Therapeutic Antibodies

Approved antibodies: 40% bind 10 targets

Relatively Easy Targets & Modes of Action Dominate Therapeutic Antibodies

New antibody development: Focused on a few targets

Fougner et al., Nat. Rev. Drug Disc. Aug. 2023

Untapped High-Value Antibody Opportunities With Challenging Targets & MOAs

Untapped Opportunities

Targets

. . .

- GPCRs
- Membrane transporters
- Protein-Protein junctions
- Disease-Specific variants

Modes of Action

- Agonism
- Multispecifics
- Dual+ MOA
- Microenvironment activation

. . .

Traditional full-length antigen discovery is inefficient for challenging targets and MOAs

Dominant epitope antibodies overwhelm traditional discovery (1, 2, 3)

Wicker et al., Eur. J. Immunol. (1984)14, p.447
Victora et al., Cell (2015) 163, p.545
Nakra et al., J. Immunol. (2000) 164, p.5615

Traditional full-length antigen discovery is inefficient for challenging targets and MOAs

Low discovery yield for high-value, challenging therapeutic target epitopes ⁽⁴⁾

(4) Trkulja et al., Sci. Adv. (2021) 7:16, p.eabe6397

Our Solution to Challenging Target and MOA Antibody Discovery: Epitope-Steering and High-Developability Mammalian-Display

Steer antibody discovery to intended epitopes

Human Diversity Antibody Library

Natural diversity in fully human validated frameworks

Human diversity mammalian-display optimization

Non-confidential

Epitope-Targeted

Antibody Discovery

Engineered Epitopes Focus Antibody Repertoires On Desired Binding Sites

full length target

Al-Engine Optimizes Engineered Epitope Structure, Stability, and Solubility

Multi-Loss Function Enforces Engineered Epitope Structure Match to Target and Overall Stability

Non-confidential

Multi-Loss Function Optimizes Engineered Epitope Solubility

Loss Term #3

Amino Acid Hydropathies

I: 4.5	V: 4.2	L: 3.8	F: 2.8
C: 2.5	M: 1.9	A: 1.8	G: -0.4
T: -0.7	S: -0.8	W: -0.9	Y: -1.3
P: -1.6	н: -3.2	E: -3.5	Q: -3.5
D: -3.5	N: -3.5	K: -3.9	R: -4.5

Average hydropathy is minimized

Engineered Epitopes are Further Optimized by Maximizing the Epitope-to-Scaffold Ratio to Reduce Scaffold-Specific Antibodies

Engineered Epitopes are Designed with the AI-Engine and Cross Validated with Folding Simulations, Binding Measurements, T_m, and NMR

Engineered Epitopes Steer Immunization and In Vitro Libraries to Target Epitopes

Engineered epitopes alternated with full length protein/cells steers immunizations and in vitro selections while enforcing full length protein and cell binding

Engineered Epitopes Can Be Used In Primary Screens to Epitope-Map Hits

5B7	1.06
6B7	1.04
5G5	0.30
13F11	1.01
13F9	1.10
14A6	0.33
15D9	1.14
16B12	0.91
18A8	0.35
18B1	0.69
19C12	1.11
18A8	0.31
Media	0.30

High Developability, Human Diversity

Antibody Libraries

Naïve In Vitro Library Uses Human Diversity to Minimize Immunogenicity Risk

Naïve Library Diversity Matches Natural Framework-Specific Distribution

StableHu[™] Optimizer Generates Focused Library Diversity Within the Capacity of Mammalian Display

Non-confidential

Optimizer AI Model is Trained to Predict Fully Human CDR Sequences

AI trained to predict fully human CDR from masked CDR

StableHu Library Sorting and NGS Identify Improved Human CDR Variants

Binding Scores Are Used to Rank Hits and Train Predictive Models for Further Optimization if Needed

CD3 T Cell Engager Arm

Anti-CD3 T Cell Agonist

Key Challenges of CD3 T Cell Engager Discovery

Dual Approaches to a Diverse Panel of Anti-CD3 Antibodies

Epitope Engineering for TCR Accessibility & Hu + Cyno Cross-Reactivity

CD3 target epitopes in the context of the full TCR

Epitope 1

Epitope 2

Epitope 3

Immunized CD3 Repertoires Were Cloned and Screened in Mammalian Display

Mammalian Display Sorting for Human + Cyno CD3 Binding & Enhanced Ab Expression

Epitope-Steered Immunization Identifies Human+ Cyno CD3 10⁴ Affinity Range Binders

<u>Human vs Cyno CD3ED HT-SPR Affinity</u>

54 hits bind human and cyno CD3 Affinity range KD = 10s pM ~ 100 nM

Most hits have comparable affinity for human and cyno CD3

39/54 = 72% Human + Cyno CD3 Cross-Reactive Hits Bind Engineered Epitopes

Human **CD3ED**, **Epitopes 1, 2** HT-SPR Affinity

- All engineered-epitopes identified epitope-specific antibodies
- Epitopes 1 & 2 identified Hu + Cyno cross-reactive antibodies meeting affinity threshold of KD ≤ 100 nM
- Epitope 1 is the most productive, potentially due to high accessibility

Human T Cell Screen Identifies 22/54 Hits That Bind Cells Across a Broad EC50 Range

Anti-CD3 Template Antibody Human Diversification with StableHu Al

Mammalian Display Sorting for Human + Cyno CD3 Binding & Enhanced Ab Expression

Individual CDR Hits from First Cell-Sort Generate Combinatorial Multi-CDR Diversity Library

StableHu Library Screening Identifies 7 Hu + Cyno CD3 Cross-Reactive Hits Across a Broad Range of Affinity

Dual-Track Discovery Identifies 22 Hits That Activate T Cells Across a Broad EC50 Range

Combined mammalian-display hit panel: Epitope-steered immunization and StableHu

Non-confidential

Tumor Associated Antigen Arm

Non-Shed Epitope Anti-MUC16 Antibody

MUC16 Is Overexpressed and Shed by Tumor Cells

Immunizations Were Steered to a MUC16 Epitope that Avoids Epitope Shedding

Immunized MUC16 Repertoires Were Cloned and Screened in Mammalian Display

Mammalian Display Sorting for MUC16 Epitope Binding & Enhanced Ab Expression

Dual-Track Discovery Identifies 34 Hits that Bind the MUC16 Epitope and ECD

ECD and Epitope HT-SPR Iso-Affinity

34/34 Hits Bind MUC16 Membrane-Proximal Epitope and ECD Expressing Cells

Combining Arms: Anti-CD3 X Anti-MUC16

Bispecific T Cell Engager

Anti-CD3 X MUC16 Bispecific T Cell Engagers Were Evaluated in 2x2 Format

2X2 Anti-CD3 X MUC16 T Cell Engagers Stimulate T Cells in Donor PBMCs

Non-confidential

2X2 Anti-CD3 X MUC16 T Cell Engagers Kill OVCAR-3 Ovarian Cancer Cells in Donor PBMCs

Non-confidential

Epitope-Targeted & Conditionally-Activated Anti-CD3 X MUC16

On-Target & On-Tissue T Cell Engager

Conditionally-Activated Antibodies Minimize On-Target, Off-Tissue Risks

Single-Cycle Discovery of Conditionally-Activated Antibodies via Engineered Epitopes

Non-confidential

Engineered Epitope Mask Conditionally Activates MUC16 and CD3 Hits

Conclusions

Epitope-Steering + Mammalian-Display Bispecific T Cell Engager Discovery

Epitope Steering

- Engineered epitopes direct and enrich antibody discovery to intended epitopes
- Reveals per-antibody-epitope activity via a multi-epitope target survey
- Antibody-engineered epitope binding enables epitope-mapping in early screens
 - Efficient single-cycle discovery of antibody-conditional masks

Mammalian-Display

- Multi-dimensional assessment at 10⁶ library diversity scale:
 - CHO cell expression level
 - 1+ desired target binding (e.g. Hu & Cyno target)
 - Specificity (e.g. poly-specificity reagent, undesired target)
- Sufficient data per-dimension for AI model training and refinement

Thanks to the iBio Scientific Team!

Cody Moore Primary Alex Taguchi contributors Martin Brenner Matt Greving Dillon Phan Cory Schwartz Domyoung Kim Matt Dent Tom Hsu Tam Phuong Jenny Le John Chen

