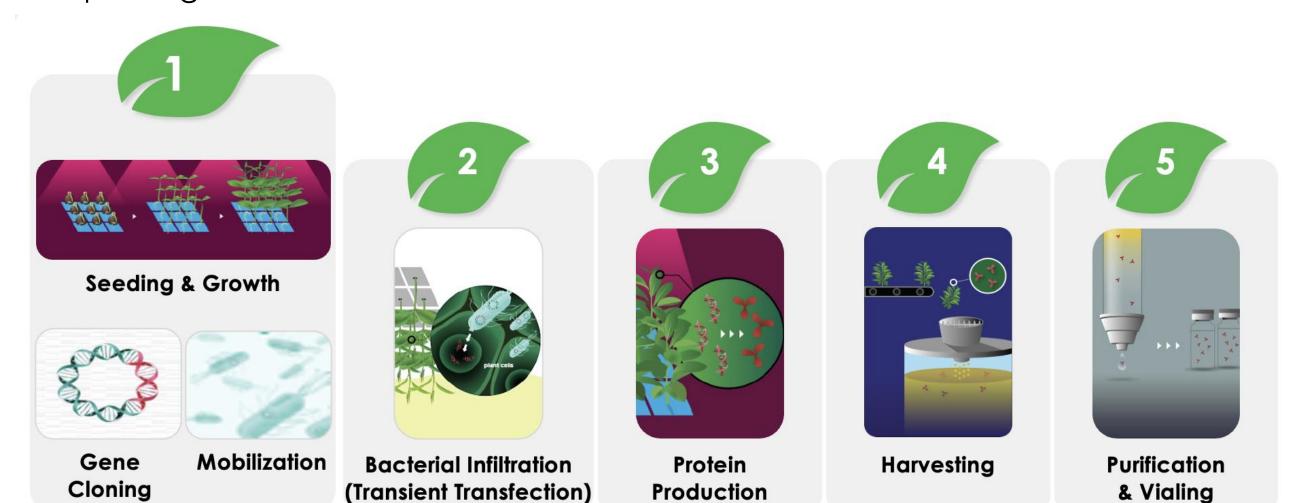
Plant-Made Antibodies Show Superior Glycosylation Homogeneity While Retaining Pharmacokinetic Properties iBío

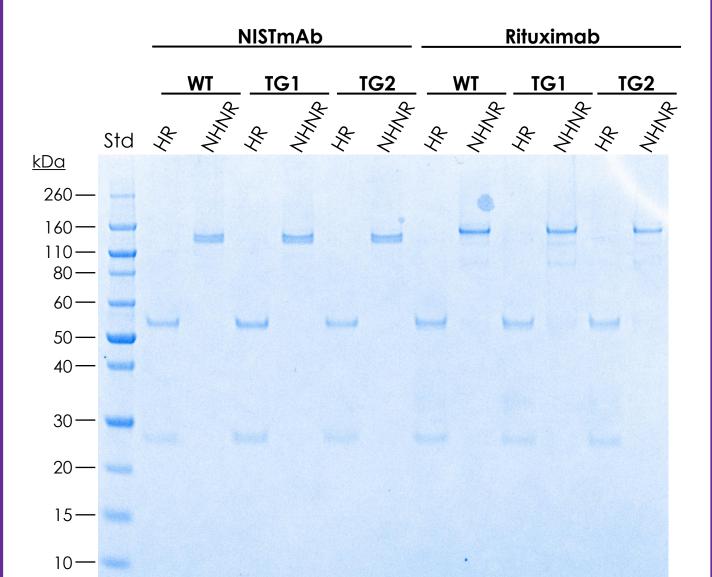
Rachel Jordan¹, Kevin McManus¹, Yo Ng¹, James Taylor¹, Domyoung Kim¹, Denis Odokonyero¹, Kevin Babilonia¹, Sreenath Palle¹, Courtney McGee¹, Sopheap Sun¹, Brian Berquist¹, Peter Kipp¹, Dillon Phan²


Monoclonal antibodies (mAbs) are a key class of biologic drugs. Their expression in alternative platforms, including plant-based systems, can provide a range of advantages. Two well-known mAbs, NISTmAb and rituximab, were produced in Nicotiana benthamiana and displayed increased homogeneity in their glycosylation pattern vs CHOmade analogs, while retaining similar pharmacokinetic properties. We believe these data support plant expression systems as promising alternatives for producing therapeutic mAbs for unmet medical needs.

Following extraction and clarification, mAbs are purified using conventional separation and chromatography steps. N. benthamiana can produce a variety of recombinant proteins, including mAbs, in a fraction of the time of traditional cell culturebased systems, while addressing the growing demand for protein products generated in an animal-free system which reduces the risk of contamination by adventitious viral agents or other undesired pathogens.

INTRODUCTION

This plant-based expression system also provides tight control of antibody glycosylation, enabling the production of highly homogeneous mAb lots. Two well-characterized antibodies were used as representative products to evaluate the production of monoclonal antibodies in the FastPharming System: NIST monoclonal antibody reference (NISTmAb) and rituximab, a therapeutic monoclonal antibody widely-used treat 10 autoimmune diseases and cancer.

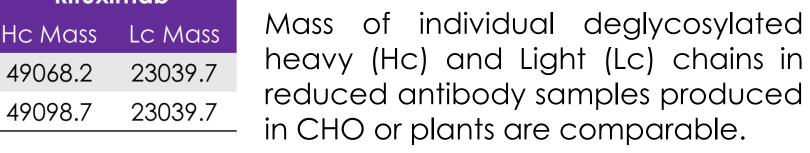


FastPharming uses a relative of the tobacco plant — Nicotiana benthamiana — as a bioreactor and a transient transfection system to produce recombinant proteins. Plants are infected with Agrobacterium as the "carrier" for the viral vector that encodes the target protein, and translation of the vector mRNAs results in the expression of the target antibody in the plant leaves in less than a week (Figure 1).

FIGURE 1. The FastPharming process to produce recombinant proteins in N. benthamiana.

RESULTS and DISCUSSION

SDS-PAGE of intact and heated/ reduced NISTmAb and rituximab



Mass Spectrometry Analysis of NISTmAb and Rituximab

iBio's advanced bioanalytical services were used to evaluate selected critical quality attributes (CQAs) of the mAbs. Deglycosylated intact mass and released glycan profiles of antibodies made in CHO cell culture and in the $\Delta XT/FT$ plant line were evaluated using multi attribute method (MAM) mass spectrometry.

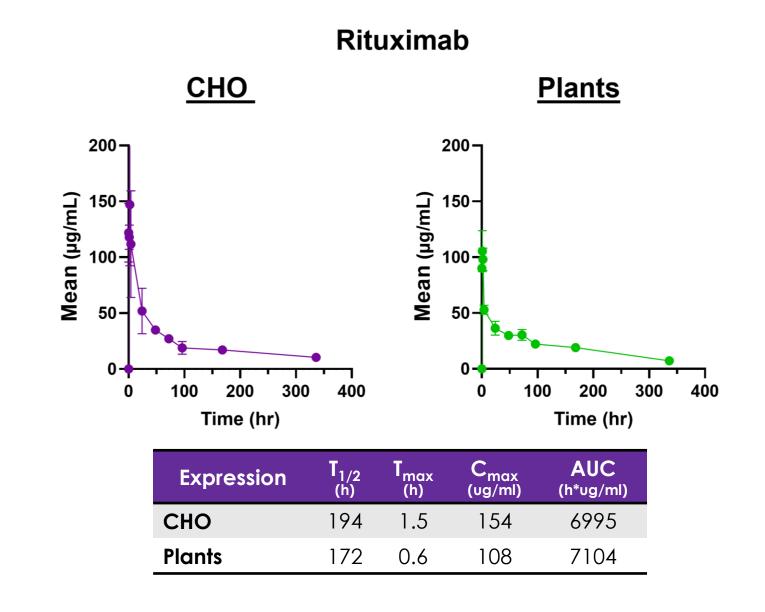
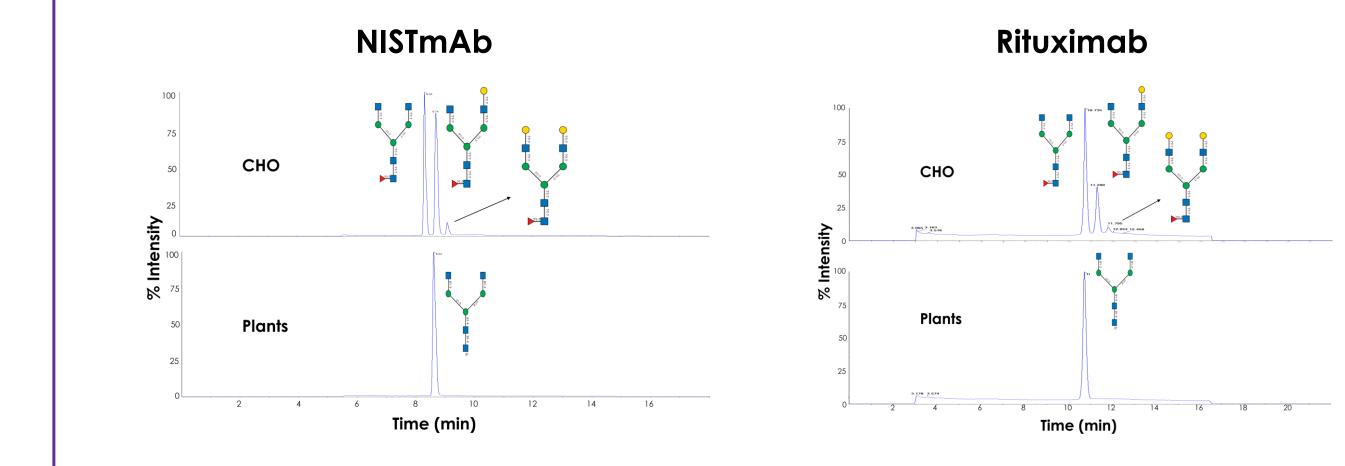
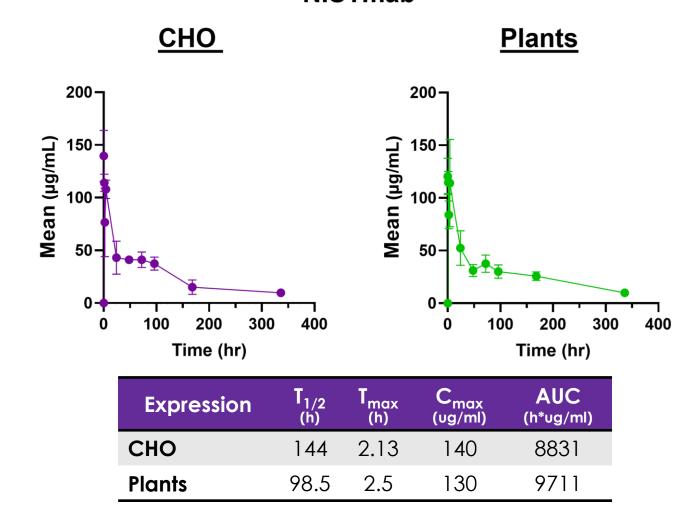

	NISTmAb		Rituximab	
	Hc Mass	Lc Mass	Hc Mass	Lc Mass
CHO	49461.9	23128.1	49068.2	23039.7
Plants	49461.5	23127.6	49098.7	23039.7

TABLE 1:


Mass spectrometry traces identifed released glycans from rituximab and NISTMAb samples produced in CHO cells as three main peaks, corresponding to a mixture of glycoforms present in these samples. Antibodies produced using the $\Delta XT/FT$ plant line contained a single main peak, indicating a single glycoform. The mass of the glycan in both $\Delta XT/FT$ plant-produced samples correlates to a glycan without xylose and fucose modifications, as expected from the $\Delta XT/FT$ plant line used to produce these antibodies.

Pharmacokinetics of CHO- and Plant-Made Antibodies


NISTmab

3.5—

FIGURE 3.

Mass spectrometry chromatographs of NISTMAb and rituximab produced in CHO cells and $\Delta XT/FT N$. benthamiana. Identified glycans are labelled near corresponding peaks.

FIGURE 4.

NISTMAb and rituximab were evaluated in PK studies. Rats were dosed with either plant- or CHO-made mAb at 5 mg/kg. Human serum IgG1 was detected by MSD method. The resulting PK curves are fundamentally similar, and $T_{1/2}$, T_{max} , C_{max} , and AUC_{last} were comparable.

- Transgenic N. benthamiana plant line $\Delta XT/FT$ produces a single uniform G0 glycosylation pattern, lacking fucose and xylose, of NISTmAb and rituximab when compared to benchmark CHO-made reference material, which contain more heterogenous glycosylation patterns.
- Plant-made NISTmAb and rituximab demonstrate comparable in vivo rodent Pharmacokinetic profile to CHO-made references.
- The rapid and scalable transient expression of high quality mAbs for in vivo studies can significantly shorten the time

- 1. Kipp, P, et al. "Rapid, High-Throughput Screening to Maximize Protein Yields in the FastPharming System[®]. iBio. Nov 2021.
- 2. Zhang, P, et al. "Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs." Drug Today. (5): (2016). Discovery 740-765 21 https://doi.org/10.1016/j.drudis.2016.01.006.
- 3. Shields RL, et al. "Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular

FIGURE 2.

NISTmAb and rituximab were produced in three different N. benthamiana plant lines: wild type (WT) and two transgenic (TG) plant lines. TG1 is a transgenic line (Δ XT/FT) with RNAi knockdown of β 1,2xylosyltransferase and a1,3fucosyltransferase. TG2 is a Δ XT/FT plant line with added galactosyltransferase Non-heated/non-reduced function. (NHNR) samples show fully assembled, intact antibodies following recovery from plant biomass. Heated/reduced (HR) samples show independent heavy and light antibody chains.

to achieve in vivo proof-of-concept.

• iBio integrates plant-made mAb proprietary technology with rapid scalability to provide an advantageous platform for manufacturing biologic therapies.

toxicity." J. Biol. Chem. 277:26733-26740 (2002). doi:10.1074/jbc.M202069200.

4. Strasser, R, et al. "Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like Nglycan structure. Plant Biotechnol. J. 6:392-402 (2008). Doi: 10.1111/j.1467-7652.2008.00330.x.

